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ABSTRACT 

In this paper, cubic interpolated pseudo particle–lattice Boltzmann model is applied 
to simulate the natural convection of air in enclosure at various Rayleigh numbers. 
The basic idea is to discretise the advection term in lattice Boltzmann governing 
equation and solved using finite difference cubic-interpolated-pseudo-particle 
method. In our approach, two-dimensional nine-velocity model is coupled with two-

dimensional four-velocity model to represent density and internal energy density 
distribution function respectively. Good agreement was obtained between the present 
approach and those by previous studies using Navier-Stokes solver and conventional 
LBM. The proposed approach is also found to be an efficient and stable numerical 
scheme for solving natural convection heat transfer problem.   
 
Keywords: Natural convection, cubic-interpolated-pseudo-particle, lattice Boltzmann 
method, natural convection 

 

 

INTRODUCTION 

Lattice Boltzmann model (LBM) was introduced as an alternative to 

traditional methods for numerically solving the Navier Stokes equations 
(Bernsdorf et al., 2000 and Azwadi et al., 2006). The standard LBM 

imposed for the sake of numerical stability, Langragian approach for the 

evolution of particle distribution function and restricts the direction of 

moving particles at a site. The LBM also ignores particle correlation and 
often use a simpler Bhatnagar-Gross-Krook (BGK) collision operator 

(Bhatnagar et al., 1954). However, even under these simplifications, LBM 

has demonstrated its ability to simulate flows in porous media (Bernsdorf et 

al., 2000), immiscible fluids (Martys et al., 1996), magneto-hydrodynamics 

(Chen et al., 1991), etc. 
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Historically, LBM was derived from the lattice gas automata (LGA) 

method (Frish et al., 1986). Consequently, the LBM inherits some 

featuresfrom its precursor, the LGA method. The dynamics of distribution 
function evolving on a lattice space consists of two main steps; collision, 

particle at the same site collide according to a set of hard sphere particle 

collisions rules; and streaming, particle move to the nearest node in the 
direction of its velocities. However, instead of using Boolean representation 

of particle in LGA, LBM uses real numbers represent the local ensemble-

averaged particle distribution function, and only kinetic equations for the 

distribution function are solved. The number of discrete velocities 
determines the lattice structure of LBM models. In other words, the 

discretization of physical space is coupled with the discretization of 

momentum space. As a result, computational in LBM is only restricted with 
uniform lattice structure and second order accuracy in space and time 

(Azwadi et al., 2008). 

 

Due to the restraint mentioned above, the standard LBM has great 
difficulty in simulating fluid flow problem under critical conditions such as 

high Reynolds number or high Rayleigh numbers. Since He et al. (He et al., 

1997) and Abe (Abe, 1998) demonstrated that the lattice Boltzmann 
equation is a discretized form of the continuous Boltzmann equation and the 

discretization of physical space is not necessary coupled with the 

discretization of momentum space, any standard numerical techniques can 
serve the purpose of solving the discrete Boltzmann equation. The first finite 

different LBM (FDLBM) was due to Reider and Sterling (Reider et al., 

1995), and was examined by Cao et al. (Cao et al., 1997) in more detail. The 

study of FDLBM is still in progress (Azwadi et al., 2008, Tolke et al., 
1998). In the present paper, we proposed a coupling of the modified finite 

different method with the LBM. Cubic interpolated pseudo particle method 

is chosen to discretize the advection term in the LBM governing equation. 
The CIP method tries to construct a solution inside the grid cell close 

enough to the real solution of the given equation with some constraints 

(Takashi et al., 2001). This method has been widely applied to simulate 
shock wave, milk crown formation and laser induced evaporation problems 

(Takashi et al., 2001). Consequently, this approach can be applied for the 

simulation at various conditions with low spatial resolution together with 

acceptable accuracy. For the verification purpose, we simulated the natural 
convection heat transfer in a square cavity ranging Ra = 10

3
 to Ra = 10

5
 and 

compared the obtained results with those from the previous studies.  

 
The rest of the paper is organized as follow. In section 2, we discuss 

the theory of thermal LBM. The double distribution function (DDF) model 
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proposed by He et al. (He et al., 1998) is brought as a governing equation 
due to its excellent numerical stability and widely used in simulating thermal 

fluid flow problems. The details theory of CIP is discussed in section 3. 

Then the CIP method is first used to solve the one dimensional advection 
equation by approximating spatial quantities in the grid interval using cubic 

polynomial. In section 4, the advection term and non advection term in LBM 

governing equation is split in order to formulize the CIP-LBM thermal 
scheme. In section 5, we apply the proposed CIP-LBM scheme and simulate 

the phenomena of natural convection in a square cavity. The final section 

concludes this study. 

 

 

THERMAL LATTICE BOLTZMANN METHOD 

The governing equations for double distribution function thermal 

LBM, (DDFTLBM) are 

 

                                   
∂f

∂t
+ c

∂f

∂x
= Ω f( )+ F                (1) 

 

                                     
∂g

∂t
+ c

∂g

∂x
= Ω g( )               (2) 

 

where the density distribution function ( ),f f x t=  is use to simulate the 

density and velocity fields and the internal energy density distribution 

function ( ), ,g g x c t= is used to simulate the macroscopic temperature field. 

C, Ω and F are the microscopic velocity, collision term and external force 

respectively. 
 

The collision term is very complicated and must be simplified in 

practical calculations. One such simplification is to replace the collision 

term by a single relaxation time BGK model (Bhatnagar et al.,1954) as 
follow: 

                                
∂f

∂t
+ c

∂f

∂x
=

1

τ f

f eq − f( )+ F               (3) 

 

                               
∂g

∂t
+ c

∂g

∂x
=

1

τ g

geq − g( ) .               (4) 
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Eqs. (3) and (4) are known as the evolution equation of the density and 

internal energy density distribution function respectively.  

 
The discretised equilibrium distributions are defined as: 

 

f i

eq = ρω i 1− 3 c i ⋅ u( )+
9

2
c i ⋅ u( )

2
−

3

2
u2 

  
 

  
    (5) 

 

gi

eq = Tω i 1− 3 c i ⋅ u( )[ ]                                                  (6) 

  

The value of ω  in Eqs (5) and (6) is depends on the direction of the 

microscopic velocity of the particle distribution function. For two-dimension 
nine-velocity model, (D2Q9) the value of w are, w1=4/9, w2-5=1/9, w6-9=1/36 

and for D2Q4, w1-4=1/4. 

 

  
 

 

 
 

 

 

 
 
 

Figure 1: D2Q9 model (left) and D2Q4 model (right) 

 
The macroscopic variables can be evaluated as the moment to the 

distribution function as follow 

 

                                                  ρ = fdc∫     (7) 

 

                                               ρu = cfdc∫                 (8) 

 

                                                 T = gdc∫ .                (9) 

 

By applying the Chapmann-Enskog expansion, Eqs. (1) to (9) can 
lead to the macroscopic continuity, momentum and energy equation. Detail 

derivation can be found in Azwadi et al. (Azwadi et al., 2007). 
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                                                  ∇ ⋅ u = 0                           (10) 
 

                                 
∂u

∂t
+ u∇ ⋅ u = −

1

ρ
∇p + υ∇ 2u + F                        (11) 

 

                                       
∂T

∂t
+ ∇ ⋅ uT( )= χ∇2T                           (12) 

 
The viscosity ν and thermal diffusivity χ are related to the time 

relaxation as follow 

 

                                                    υ =
τ f

3
                                        (13) 

 

                                                     χ = τ g                                         (14) 

 

 

CUBIC-INTERPOLATED-PSEUDO-PARTICLE (CIP) 

The CIP method was proposed and has been highly proven to be a 

universal solver for hyperbolic type of equations (Takewaki et al.). CIP is 

known as a numerical method for solving advection equation with low 

numerical diffusion (Yuya et al., 2004). This method constructs a solution 
inside the grid cell close enough to the real solution of the given equation 

(Yabe et al., 2002). 

 
 In this section, we briefly discuss the theory of CIP scheme in one 

dimensional case. For higher dimensional cases, readers are encouraged to 

refer the cited references. We consider a linear hyperbolic equation to be 

solved in the following term 

  

                                           
∂f

∂t
+ c

∂f

∂x
= 0                        (15) 

 

 
The theoretical solution of Eq. (15) is obtained by shifting a profile 

 

                              f x i, t + ∆t( )= f x i − c∆t, t( )                       (16) 
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                F
i

x( )= A
i

x − x
i( )

3
+ B

i
x − x

i( )
2

+ C
i

x − x
i( )+ D

i
            (17) 

 

The coefficients of A, B, C and D are determined so that the 

interpolation function and its first derivatives is continuous at both ends. As 
a result, we have 

 

                               A
i
=

g
i
+ g

i−1

∆x
2

+
2 f i − f i−1( )

∆x
3

                                 (18) 

                              B
i
=

3 f i−1 − f i( )
∆x

2
+

2g
i
+ g

i−1

∆x
                                (19) 

 

                                      
Fi x i( )

dx
= C

i
= g

i
                                           (20) 

 

                                      F
i

x
i( )= D

i
= f

i
                                           (21) 

 

Once F
i

x( ) are determined for all grid intervals, the spatial 

derivatives are calculated as 

 

                      
Fi x i( )

dx
= 3A

i
x − x

i( )+ 2B
i( ) x − x

i( )+ g
i
                      (22) 

 
The advection profile is given by 

 

                           f
i

n +1 = A
i
ξ 3 + B

i
ξ 2 + g

i

nξ + f
i

n                                 (23) 

                                                                              
and 

                              g
i

n +1 = 3A
i
ξ 2 + 2B

i
ξ + g

i

n                                      (24) 

 
where 

                                 f n+1 = F x − c∆t( )                                            (25) 

 

                                 gn +1 =
dF x − c∆t( )

dx
                                          (26) 

 
                                        ξ = −c∆t                                                    (27) 
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We first apply CIP method to the propagation of a square wave. 
Figure 2 shows the comparison of results when the wave moves from its 

initial position to new position predicted by CIP, first order upwind scheme, 

Lax Wendroff Scheme and the analytical solution. The result shows that the 
CIP method gives the best solution compared to other methods.  

 

 

 
(a) 
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(b) 

 

 
(c) 

 
Figure 2: Comparison solution to the advection equation using (a) CIP scheme (b) first order upwind 

scheme and (c) Lax-Wendroff scheme 
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TWO-DIMENSIONAL CIP-LBM THERMAL BGK 

BOLTZMANN SCHEME 

The LBM governing equation is readily split into advection and non-
advection phase. The non-advection phase or collision term specifically, can 

be directly solved without any difficulty. On the other hand, the advection 

phases can be solved using CIP method discussed in the previous section. 

 
Two dimensional Boltzmann equations is expressed as 

 

                       
∂f

∂t
+ cx

∂f

∂x
+ cy

∂f

∂y
= −

1

τ f

f − f eq( )+ F                      (28) 

 

                         
∂g

∂t
+ cx

∂g

∂x
+ cy

∂g

∂y
= −

1

τ g

g − geq( )                           (29) 

 
The evolution of the advection and collision phase can be rewritten 

separately as follow 

                                 
∂f

∂t
+ cx

∂f

∂x
+ cy

∂f

∂y
= 0                                       (30) 

 

                                
∂g

∂t
+ cx

∂g

∂x
+ cy

∂g

∂y
= 0                                        (31) 

 

                               
∂f

∂t
= −

1

τ f

f − f eq( )+ F                                      (32) 

 

                               
∂g

∂t
= −

1

τ g

g − geq( )                                             (33) 

 

Differentiating Eqs. (30) to (33) respect to x and y gives 

 

                           
∂

∂t
f x + cx

∂

∂x
fx + cy

∂

∂y
f x = 0                                 (34) 
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∂

∂t
f y + cx

∂

∂x
fy + cy

∂

∂y
f y = 0                                 (35) 

 

                          
∂

∂t
gx + cx

∂

∂x
gx + cy

∂

∂y
gx = 0                                   (36) 

 

                          
∂

∂t
gy + cx

∂

∂x
gy + cy

∂

∂y
gy = 0                                   (37) 

 

                          
∂

∂t
f x = −

1

τ f

f x − f x

eq( )+ Fx                                      (38) 

 

                         
∂

∂t
f y = −

1

τ f

f y − f y

eq( )+ Fy                                       (39) 

 

                          
∂

∂t
gx = −

1

τ g

gx − gx

eq( )                                             (40) 

                          
∂

∂t
gy = −

1

τ g

gy − gy

eq( )                                             (41) 

where    

                   fx =
∂f

∂x
, fy =

∂f

∂y
 , gx =

∂g

∂x
, and gy =

∂g

∂y
. 

 
In CIP method, the profile between lattice points for density 

distribution function is interpolated using cubic polynomial as follow 

 

Fi, j x,y( )= A1i, j X + A2i, jY + A3i, j( )X + A4 i, jY + ∂x f i, j][ X

                 + A5 i, jY + A6i, j X + A7i, j( )Y + ∂y f i, j[ ]Y + f i, j

              (42) 

 
where X = x − x i, j  and Y = y − y i, j . The coefficients in Eq. (42) are 

expressed as follow 

 

A1i, j = −2di + ∂x f i+1, j + f i, j( )∆x[ ] ∆x
3
                                             (43) 
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A2i, j = A8i, j −∂xd j + ∂x∆x[ ] ∆x 2∆y                                                  (44) 

 

A3i, j = 3di − ∂x f i+1, j + 2 f i, j( )∆x[ ] ∆x
2
                                             (45) 

 

A4 i, j = −A8i, j + ∂xd j∆x + ∂ydi∆y[ ] ∆x∆y                                          (46) 

 

A5i, j = −2d j + ∂y f i, j +1 + f i, j( )∆y[ ] ∆y
3
                                            (47) 

 

A6i, j = A8i, j −∂ydi∆x[ ] ∆x∆y 2                                                         (48) 

 

A7i, j = 3d j −∂y f i, j +1 + 2 f i, j( )∆y[ ] ∆y
2
                                            (49) 

 

A8i, j = f i, j − f i+1, j − f i, j +1 + f i+1, j +1                                                     (50) 

where  

 
                        di = f i+1, j − f i, j  and d j = f i, j +1 − f i, j  

 
The spatial derivatives are then calculated as 

 

Fx i, j( ) x, y( )= 3A1i, j X + 2A2i, jY + 2A3i, j( )X + A4 i, j + A6 i, jY( )+ f x,i, j
      (51) 

 

F
y i, j( ) x, y( )= A2i, j X + A4 i, j( )X + 3A5i, jY + 2A6i, j X + 2A7i, j( )Y + f y,i, j

      (52) 

 
Finally, the advected profile for density distribution function is 

approximated as follows 

 

f i, j

n* = Fi, j x i, j + ξx , y i, j + ξy( )                                                             (53) 

f
x i, j( )
n* = F

x i, j( ) x i, j + ξ x, y i, j + ξy( )                                                        (54) 

 

f
y i, j( )
n* = F

y i, j( ) x i, j + ξ x, y i, j + ξy( )                                                        (55) 
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where ξx = −cx,i∆t  and ξy = −cy,i∆t . 

 
The same procedures apply for the internal energy distribution 

function. 

 

The evolution of CIP-LBM consists of three steps. The initial value 

of , ,
x y

f f f  and ,
x

g g  and 
y

g  are specified at each grid point ( ),i j . Then 

the system evolves in the following steps; 

 

1. Since the pre-advected value of , ,
x y

f f f  and ,
x

g g  and 
y

g  are 

known on each grid, the cubic interpolation process can be 

completed according to Eqs. (42), (51) and (52). 
 

2. After the interpolation, advection takes place and f n +1
, f

x

n +1
, 

f
y

n +1
, gn +1

, g
x

n +1
, and g

y

n +1
 on the grids are obtained using Eqs. 

(53) to (55). 

 

3. The values of f n +1
, f

x

n +1
, f

y

n +1
, gn +1

, g
x

n +1
, and g

y

n +1
 at the grid 

intervals are computed again from Eqs. (42), (51) and (52). 
These interpolation and advection processes are repeated one 

after another until the convergence criterion is satisfied. 

 

 

RESULTS AND DISCUSSION 

In present study, the proposed CIP-thermal LBM was used to 

simulate the natural convection heat transfer in a two dimensional square 
cavity with the left wall is kept at hot temperature and right wall at cold 

temperature. Top and bottom walls of the cavity are being adiabatic. 

Temperature gradient exists in a fluid due to temperature difference. 
Consequently, the density difference induces a fluid motion that is 

convection. 

 
Schematic diagram of the setup simulation is shows in Figure 3. No-

slip boundary conditions (Frish et al., 1986) are imposed on all the faces of 

the square with height, H. The thermal conditions applied on the walls are 

depicted in Figure 3. 
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Figure 3: Geometry and boundary conditions of the natural convection heat transfer in a square cavity 

problem. 

 
In the simulation, the Boussinesq approximation is applied to the buoyancy 

term. With this approximation, it is assumed that all fluid properties can be 

considered as constant in the body force term except for the temperature 
dependence of the density. The Boussinesq approximation equation can be 

written as 

 

                                     ρG = ρβg T − T
m( )j                                      (56) 

 
where β is the thermal expansion coefficient, g is the acceleration due to the 
gravity, Tm is the average temperature and j is the vertical direction opposite 

to that of gravity. Therefore, the external force in Eq. (1) can be written as 

 

                                       F = 3G cy − v( )f i

eq                                      (57) 

 
The dynamical similarity depends on two dimensionless parameters; 

the Prandtl number, Pr and the Rayleigh number, Ra; 

 

                                    Pr =
υ

χ
, Ra =

gβ∆TL3

υχ
                                   (58) 

 

 

X 

0
T

y

∂
=

∂
 

HT  

0
T

y

∂
=

∂
 

g 
  

C
T  

Y 
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The convergence criterion for all the tested cases is 

 

                                       f
i

eq,n +1 − f
i

eq,n ≤ 10−5                                    (59) 

 

                                       g
i

eq ,n +1 − g
i

eq,n ≤ 10−5                                     (60) 
 

In the simulation, Pr is set to be 0.71 to simulate air as a working 
fluid. In this study, the number of grid is taken uniform in both x-and y-

direction. The grid dependence study has been done for the simulation at Ra 

= 10
3 
and shown in Table 1. As we can see from the table, as we increase the 

grid size, the calculated variables converge to a fixed value. Grid size of 51 

x 51 is found to be sufficient compare to Azwadi et al. (Azwadi et al., 2007) 

where the grid size of 101 x 101 was needed to simulate the same 

phenomena at same Rayleigh number. For Ra = 10
4
, grid size of 71 x 71 was 

used for the simulation while Azwadi et al. (Azwadi et al., 2007) applied 

grid size of 151 x 151 for the same simulation. These comparisons indicate 

that the grid size can be reduced about 50 percent by using CIP-LBM 
scheme. 

TABLE 1: Grid dependence study of Ra = 10
3
. 

 

Grid 31 x 31 51 x 51 61 x 61 

Umax 3.598 3.632 3.649 

Y 0.806 0.820 0.820 

Vmax 3.701 3.694 3.739 

X 0.19 0.19 0.18 

Nuave 1.112 1.116 1.117 

 

The main characteristic of natural convection flow are shown in 
terms of streamlines and isotherms. Figure 4 illustrates the streamline 

patterns for all Rayleigh numbers simulated using CIP-LBM, excellent 

agreement were obtained with those from previous studies by Davis et al. 

(Davis et al.,1983).  
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Figure 4: Streamline plots for Ra = 10
3
, 10

4 
and 10

5
 

 

 
 

Figure 5: Isotherms for Ra = 10
3
, 10

4
 and 10

5
  

 
At Ra = 10

3
, a circular shaped vortex appears at the centre of the 

cavity and the isotherms are almost vertically parallel to the wall indicating 
that conduction mode heat transfer mechanism is dominant.  

 
By increasing the Rayleigh number to Ra = 10

4
, circular vortex is 

distorted and evolved as a horizontally oval shaped vortex. Meanwhile, the 

isotherms start to be horizontally parallel to the wall at the center of cavity. 

This is due to the convection mode heat transfer and buoyancy effect. At this 
Rayleigh number, heat transfer mechanisms in the cavity are influenced by 

both convection and conduction mode. 

 
For the simulation at high Rayleigh number (Ra = 10

5
), two vortices 

exist when the system achieved steady state condition. Isotherms almost 

horizontally parallel to the wall indicating that convection is the main heat 

transfer mode. 

Table 2 shows the numerical results of the maximum horizontal 

velocity on the vertical mid-plane of the cavity with its location, the 
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maximum vertical velocity on the horizontal mid-plane of the cavity with its 

location and also the average Nusselt number throughout the cavity using 

the CIP-LBM scheme. The numerical results obtained by the original 
internal energy thermal lattice Boltzmann model proposed by He et al. (He 

et al.,1998), simplified thermal model by Azwadi et al. (Azwadi et al., 

2007), Navier-Stokes solution by Davis et al. (Davis et al., 1983) and the 
thermal LBM model proposed by Peng et al. (Peng et al., 2003) are also 

included for comparison. As can be seen from the table, the prediction with 

CIPLBM method gives excellent agreement with others numerical method 

even at low spatial resolution. 

 

 

TABLE 2: Comparison of the present CIP-LBM scheme numerical results with others numerical methods 

 

Ra 103 104 105 

Umax 

He et al., (1998) 3.649 16.156 34.245 

Azwadi et al.,  (2007) 3.646 16.154 35.481 

Davis et al., (1983) 3.634 16.182 34.810 

Peng et al., (2003) 3.645 16.140 34.261 

Present 3.632 16.304 43.331 

y 

He et al., (1998) 0.810 0.820 0.855 

Azwadi et al., (2007) 0.810 0.820 0.855 

Davis et al., (1983) 0.813 0.823 0.855 

Peng et al., (2003) 0.810 0.820 0.855 

Present 0.820 0.82 0.9 

Vmax 

He et al., (1998) 3.700 19.679 68.276 

Azwadi et al., (2007) 3.694 19.597 69.243 

Davis et al., (1983) 3.679 19.509 68.220 

Peng et al., (2003) 3.691 19.585 67.799 

Present 3.694 19.835 67.930 

x 

He et al., (1998) 0.180 0.120 0.065 

Azwadi et al., (2007) 0.180 0.120 0.065 

Davis et al., (1983) 0.179 0.120 0.066 

Peng et al., (2003) 0.180 0.120 0.065 

Present 0.190 0.13 0.066 

Nuave 

He et al., (1998) 1.117 2.244 4.520 

Azwadi et al., (2007) 1.117 2.236 4.549 

Davis et al., (1983) 1.116 2.234 4.510 

Peng et al., (2003) 1.117 2.235 4.511 

Present 1.116 2.201 4.249 

 

The dimensionless horizontal and vertical velocity profile given at 

the mid-height and mid-width of the cavity are shown in Figure 6 and 7. 

Both figures show that the location of maximum velocity shifted nearer to 
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the walls if the Rayleigh number is increased. The magnitude of maximum 
velocity component is also directly proportional to the Rayleigh number. 

 

 

Figure 6: Horizontal velocity profile at the mid height of the cavity 

 

 

Figure 7: Vertical velocity profile at the mid width of the cavity. 
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CONCLUSION 

In this paper, we solved the LB advection equation using CIP 
method. For the verification purpose, we simulated the natural convection 

heat transfer in a square cavity at various Rayleigh number. Our study 

showed that the flow pattern, heat transfer mechanism and Nusselt number 

are significantly affected by the value of Rayleigh number.  

The demonstrated results are excellent agreement with those obtained 

from previous studies. This demonstrated that the proposed CIP-LBM is 

found to be an efficient and accurate numerical method for solving thermal 
fluid flow problem. The extension to 3D CIPLBM will be considered in our 

future study. 
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